A structured approach to choosing estimands and estimators in longitudinal clinical trials.
نویسندگان
چکیده
An important evolution in the missing data arena has been the recognition of need for clarity in objectives. The objectives of primary focus in clinical trials can often be categorized as assessing efficacy or effectiveness. The present investigation illustrated a structured framework for choosing estimands and estimators when testing investigational drugs to treat the symptoms of chronic illnesses. Key issues were discussed and illustrated using a reanalysis of the confirmatory trials from a new drug application in depression. The primary analysis used a likelihood-based approach to assess efficacy: mean change to the planned endpoint of the trial assuming patients stayed on drug. Secondarily, effectiveness was assessed using a multiple imputation approach. The imputation model-derived solely from the placebo group-was used to impute missing values for both the drug and placebo groups. Therefore, this so-called placebo multiple imputation (a.k.a. controlled imputation) approach assumed patients had reduced benefit from the drug after discontinuing it. Results from the example data provided clear evidence of efficacy for the experimental drug and characterized its effectiveness. Data after discontinuation of study medication were not required for these analyses. Given the idiosyncratic nature of drug development, no estimand or approach is universally appropriate. However, the general practice of pairing efficacy and effectiveness estimands may often be useful in understanding the overall risks and benefits of a drug. Controlled imputation approaches, such as placebo multiple imputation, can be a flexible and transparent framework for formulating primary analyses of effectiveness estimands and sensitivity analyses for efficacy estimands.
منابع مشابه
مدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کامل1 Why Missing Data Matter
This section begins with a chapter illustrating how missing data can cloud inferences to be drawn from clinical trials – in other words, why missing data matter. Chapter 2 focuses on the mechanisms that give rise to missing data. Understanding these mechanisms is the essential background needed to understand the possible consequences of missing data. Chapter 3 discusses estimands – what is to b...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملA mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials
In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recogni...
متن کاملAn Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pharmaceutical statistics
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2012